Identifiability in Blind Deconvolution With Subspace or Sparsity Constraints

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Undercomplete Blind Subspace Deconvolution

Here, we introduce the blind subspace deconvolution (BSSD) problem, which is the extension of both the blind source deconvolution (BSD) and the independent subspace analysis (ISA) tasks. We treat the undercomplete BSSD (uBSSD) case. Applying temporal concatenation we reduce this problem to ISA. The associated ‘high dimensional’ ISA problem can be handled by a recent technique called joint f-dec...

متن کامل

Complete Blind Subspace Deconvolution

Cocktail-party Problems (increasing generality): • Independent component analysis (ICA) [1, 2]: onedimensional sound sources. • Independent subspace analysis (ISA) [3]: independent groups of people. • Blind source deconvolution (BSD) [4]: one-dimensional sound sources and echoic room. • Blind subspace deconvolution (BSSD) [5]: independent source groups and echoes. Separation Theorem: • ISA ([3]...

متن کامل

Blind Deconvolution with Re-weighted Sparsity Promotion

Blind deconvolution has made significant progress in the past decade. Most successful algorithms are classified either as Variational or Maximum a-Posteriori (MAP ). In spite of the superior theoretical justification of variational techniques, carefully constructed MAP algorithms have proven equally effective in practice. In this paper, we show that all successful MAP and variational algorithms...

متن کامل

Blind Deconvolution with Non-local Sparsity Reweighting

Blind deconvolution has made significant progress in the past decade. Most successful algorithms are classified either as Variational or Maximum a-Posteriori (MAP ). In spite of the superior theoretical justification of variational techniques, carefully constructed MAP algorithms have proven equally effective in practice. In this paper, we show that all successful MAP and variational algorithms...

متن کامل

Identifiability in Blind Deconvolution under Minimal Assumptions

Blind deconvolution (BD) arises in many applications. Without assumptions on the signal and the filter, BD is ill-posed. In practice, subspace or sparsity assumptions have shown the ability to reduce the search space and yield the unique solution. However, existing theoretical analysis on uniqueness in BD is rather limited. In an earlier paper of ours [1], we provided the first algebraic sample...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2016

ISSN: 0018-9448,1557-9654

DOI: 10.1109/tit.2016.2569578